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Study region: Lake Champlain Basin, northwestern New England, USA.
Study  focus: Our study uses regional hydrologic analyses and modeling to exam-
ine  alternative possibilities that might emerge in the Lake Champlain Basin
streamflow regime for various climate scenarios. Climate data as well as spa-
tial  data were processed to calibrate the Regional Hydro-Ecological Simulation
System  (RHESSys) model runoff simulations. The 21st century runoff simulations
were  obtained by driving the RHESSys model with climate data from the Coupled
Model Intercomparison Project phase 5 (CMIP5) for representative concentration
pathways  RCP 4.5 and 8.5.
New hydrological insights for the region: Our analyses suggest that most of
CMIP5  ensembles fail to capture both the trends and variability observed in his-
torical  precipitation when run in hindcast. This raises concerns of using such
products in driving hydrologic models for the purpose of obtaining reliable runoff
projections that can aid researchers in regional planning. A subset of five cli-
mate  models among the CMIP5 ensembles have shown statistically significant
trends in precipitation, but the magnitude of these trends is not adequately repre-
sentative  of those seen in observed annual precipitation. Adjusted precipitation
forecasts  project a streamflow regime described by an increase of about 30% in
seven-day maximum flow, a four days increase in flooded days, a three orders of
magnitude  increase in base flow index, and a 60% increase in runoff predictability
(Colwell  index).
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1. Introduction

Over the past several decades, temperature and precipitation have increased significantly in the
northeastern United States (Hayhoe et al., 2007, 2008; Huntington et al., 2009; Melillo et al., 2014).
Understanding the impacts of these climatic changes on watershed hydrology is important for human
society and ecological processes. However, the observed climate trends show significant spatial vari-
ability within New England in addition to pronounced seasonality (Hayhoe et al., 2008). Recent
dissemination of downscaled Global Circulation Model (GCM) data has made such regional analysis
tractable. For example, statistically downscaled data products such as the Coupled Model Intercom-
parison Project (CMIP5) multi-model ensemble and its predecessors are commonly applied as drivers
of hydrology models (Meehl et al., 2007; Taylor et al., 2011; Meehl et al., 2014). Such downscaled data
have great potential to aid researchers, resource managers, and other policy makers in the assess-
ment of climate change impacts on water and the environment. However, at least two  studies have
documented poor correlation between precipitation obtained from such downscaled climate model
products and observations (Stephens et al., 2010; van Haren et al., 2013), therefore the applicability
of CMIP5 precipitation data for regional hydrological impacts analysis must be validated.

Changes in streamflow regime in the northeastern United States have been examined in multiple
studies using historical datasets (Hartley and Dingman, 1993; Hodgkins et al., 2003, 2005; Hodgkins
and Dudley, 2005, 2006; Campbell et al., 2011). These works summarized the observed northeastern
streamflow regime change as timing shift toward earlier spring flow and a more uniform distribution
of flow throughout the snowmelt period (i.e., March streamflows have increased, while May  flows
have declined). However, summer baseflow increased in undammed New England rivers during the
latter half of the twentieth century (Hodgkins and Dudley, 2011).

Potential impacts of climatic changes on aquatic ecosystems species, nutrient delivery, tempera-
tures and hydrology have been discussed for different regions of the United States (Melack et al., 1997;
Hauer et al., 1997; Mulholland et al., 1997; Moore et al., 1997; Stone et al., 2001). Natural flow regime
plays a major role in sustaining native biodiversity and ecosystem integrity in rivers (Poff et al., 1997).
Streamflow regime alteration may  also affect aquatic organisms, sediment movement and floodplain
interactions (Gibson et al., 2005). Characterization of flow regime has been examined via metrics that
describe the magnitude, frequency, duration, timing and rate of change for streamflow (Poff, 1996;
Poff et al., 1997; Puckridge et al., 1998). These streamflow metrics are useful determinants of ecolog-
ical process regulation in river ecosystems. Numerous similar streamflow regime metrics have been
compiled (Richter et al., 1996; Puckridge et al., 1998; Snelder and Biggs, 2002).

The Lake Champlain Basin is a multi-state and bi-national watershed (Vermont, New York and
Québec) with a drainage area of about 21,000 km2 (Stager and Thill, 2010) and serves as a major
source of ecosystem services and economic inputs to the northeastern United States. Predicted 21st
century climatic changes are expected to impact a range of environmental processes in the Basin and
therefore raise concerns about hydrological, ecological as well as political conditions (Stager and Thill,
2010). Therefore, an evaluation of climate change impacts on regional hydrology would greatly benefit
policymakers and other stakeholders. In this study, we  examine the reliability of the CMIP5 ensemble
of simulations in performing regional hydrological impacts analysis in northwestern New England. We
also discuss the uncertainty associated with climate change impacts on a Vermont watershed flow
regime. We  perform such an assessment in the Mad  River watershed of Vermont, and subsequently
predict future flow regime for the Mad  River using the downscaled climate data using metrics that are
useful to policymakers and ecologists.

2. Methods

2.1. Study area

The Mad  River near Moretown is a 360 km2 tributary watershed of the Winooski River (HUC
02010003) within the Vermont portion of the Lake Champlain basin (Fig. 1). This watershed is a
representative study area for examining the impacts of climate change on streamflow regime since
the mixed forested, agricultural and village center land covers are typical of the Vermont landscape.
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Fig. 1. Mad  River near Moretown watershed (USGS # 04288000) is located within the Winooski basin (HUC 02010003). The
watershed drainage area is about 360 km2. The headwater of the Mad  River is Granville Notch Falls. Mad  River drains into the
Winooski River which in turn drains into Lake Champlain.
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The watershed is mainly forested with urbanized town centers (about 4% of watershed area) and
agricultural lands (about 8% of watershed area) found mainly on the valley floor.

A long monitoring streamflow data record is available for the Mad  River watershed at its outlet. The
watershed outlet (United States Geological Survey (USGS) streamflow gauge # 04288000) is located
at 44◦16′38′′ North and 72◦44′35′′ West (referenced to the North American Datum (NAD) of 1927)
within the Washington County, Vermont. The gauge altitude is 170 m above sea level referenced
to the National Geodetic Vertical Datum (NGVD) of 1929. The Mad  River flows north toward the
Winooski River, which flows to Lake Champlain. Lake Champlain is drained by the Richelieu River to
the north and is situated within the St. Lawrence River drainage. The streamflow record at the Mad
River gauge begins in October 1928. Streamflow data for this work was  retrieved from the USGS portal
(http://waterdata.usgs.gov/nwis/dv/?site no=04288000&agency cd=USGS&amp;referred module=sw)
accessed on 4 February 2014. Mean annual runoff (Q) measured at the outlet of the study watershed
during the period 1950–2013 (water years) is 714 mm.  April is the highest yield month at the water-
shed outlet with monthly median runoff of 160 mm,  and in drier months, occasional fluctuations at
low flow have occurred. Mean annual precipitation (Pcp) on the study watershed is 1235 mm.  Table 1
shows the annual mean precipitation, runoff and evapotranspiration (E) for the years 1920–2010
over the study watershed. The annual average evapotranspiration was calculated using mass balance
(E = Pcp − Q ).

2.2. Spatial data

A digital elevation model (DEM) with 30 m grid resolution for the study area was obtained from the
National Elevation Dataset (NED) portal (http://seamless.usgs.gov/website/seamless/viewer.htm) and
was used to derive slope and aspect grids for the model input. Fig. 2, panel (a) shows the topography
of our study watershed, which ranges from 170 to 1240 m above sea level with a mean value of 491 m.

Land use and vegetation data were obtained from the National Land Cover Dataset (NLCD 2006)
(http://gisdata.usgs.net/website/MRLC/viewer.htm). We  grouped vegetation and land use for our
study watershed into eight categories: coniferous forest, deciduous forest, mixed forest, grassland,
no vegetation, shrub, agriculture and urban. The forest cover dominates about 87% of the watershed
area (52% deciduous, 23% mixed, and 12% conifer forests). There are a few agricultural lands and small
urban areas within valleys and scattered over the watershed area (Fig. 2, panel b).

The watershed surface soil texture map  was obtained from the Natural Resources Conservation
Service County Soil Survey Data dataset through the Vermont Center for Geographic Information
Gateway (http://vcgi.vermont.gov/). County soil data for the Washington, Addison and Chittenden
counties were obtained to compile our watershed soil texture map. The watershed soil texture is
mainly sandy clay loam (approximately 80% of the watershed area) which has 34% clay content. The
mean soil depth at the valley floor is approximately 1.5 m.

2.3. Climate data

Daily precipitation (Pcp), minimum and maximum air temperatures (Tmin and Tmax), and
wind speed (w) data were obtained from the Santa Clara University portal (http://www.engr.scu.
edu/ emaurer/data.shtml) (Maurer et al., 2002). The data is at daily and 1/8th degree resolutions for
the period 1 January 1949 to 31 December 2010, and constitutes the historical climate data set for our

Table 1
Mad  River near Moretown, Vermont (USGS # 04288000) annual water balance estimates (1950–2010). Precipitation (Pcp) from
Maurer et al. (2002), Runoff (Q) from the USGS national water information system (http://waterdata.usgs.gov/nwis) gauge
number 04288000. Mean annual evapotranspiration estimated from mass balance.

Variable Minimum 25th percentile Median Mean 75th percentile Max

Pcp (mm)  851 1091 1198 1235 1361 1805
Q  (mm)  332 579 671 682 786 1074
E (mm) 553

http://waterdata.usgs.gov/nwis/dv/?site_no=04288000&agency_cd=USGS&amp;referred_module=sw
http://seamless.usgs.gov/website/seamless/viewer.htm
http://gisdata.usgs.net/website/MRLC/viewer.htm
http://vcgi.vermont.gov/
http://www.engr.scu.edu/~emaurer/data.shtml
http://www.engr.scu.edu/~emaurer/data.shtml
http://waterdata.usgs.gov/nwis
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Fig. 2. Spatial input data. (a) Digital elevation model (DEM) (30 m grid size) and (b) land cover. Land cover data are from the
NLCD 2006 dataset.

study. The climatic seasonal variation for our study watershed is shown in Fig. 3. July is the hottest
month of the year with average daily maximum and minimum air temperatures of 24 and 13 ◦C
respectively.

Output data from two scenarios of Representative Concentration Pathways (RCP 4.5 and 8.5)  sim-
ulations of GCM output data (daily precipitation, minimum and maximum air temperatures) were
obtained from the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble
(Taylor et al., 2011). The gridded datasets are all at 1/8th degree resolution, and aggregate metrics
for precipitation (Pcp) and air temperatures (Tmin and Tmax) were calculated for the eight grid cells
spanning the Mad  River watershed.

Downscaled model inputs selected were the bias correction constructed analogs method (BCCA)
products discussed by Maurer et al. (2010). Full details about the climate scenario data are in Brekke
et al. (2013). For this work, we utilized the gridded bias-corrected climate scenarios data for the
2006–2100 time period as well as the retrospective climate data for 1951–2005 time period (further
details on climate models can be found at Appendix A).

A visual assessment of the CMIP5 projection ensembles hindcast data when compared with
observed historic precipitation (Maurer et al., 2002) suggests that the CMIP5 model ensembles have
poorly captured the variability and trends historically observed. Fig. 4 shows the annual observed
precipitation time series over the study watershed during 1951–2005 water years along with the
twenty-one CMIP ensembles when run on a hindcast mode.

Figs. 5 and 6 show annual precipitation and annual air temperatures (minimum and maximum),
respectively, aggregated over our study watershed from the CMIP5 subset ensembles under the RCP 8.5
scenario. There is a large difference in the slope between historical and future precipitation projections.

2.4. RHESSys model description

The Regional Hydro-Ecologic Simulation System (RHESSys) model described by Band et al. (1993,
1996) and Tague and Band (2001, 2004) is a GIS-based, hydro-ecological modeling framework designed
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Fig. 3. Historic climate input data over the study watershed and measured runoff at the Mad  River near Moretown watershed
outlet  (USGS gauge # 04288000) during 1949–2010. Boxplots of monthly averages of minimum, maximum air temperatures
and  wind speed. Boxplots of precipitation and runoff amounts summed monthly. Climate data obtained from Maurer et al.
(2002).
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Fig. 4. Annual historic precipitation aggregated over the Mad  River near Moretown watershed (USGS gauge # 04288000) during
1951–2005 water years. Observed data obtained from Maurer et al. (2002) depicted as solid black line (Maurer), while climate
data  of twenty one climate models (run on hindcast) were obtained from the Coupled Model Intercomparison Project phase 5
(CMIP5) ensembles (http://gdo-dcp.ucllnl.org/downscaled cmip projections/dcpInterface.html).
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Fig. 5. Annual precipitation aggregated over the Mad  River near Moretown watershed (USGS gauge # 04288000). His-
torical climate data obtained from Maurer et al. (2002), while scenario (RCP 8.5) climate data of five climate models
were obtained from the Coupled Model Intercomparison Project phase 5 (CMIP5) ensembles (http://gdo-dcp.ucllnl.org/
downscaled cmip projections/dcpInterface.html).

to simulate carbon, water and nutrient fluxes. RHESSys combines both a set of physically based process
models and a methodology for partitioning and parameterizing the landscape over spatially variable
terrain ranging from ten meters to hundreds of kilometers. The version of RHESSys used for this
work (5.14.4) includes both surface and subsurface storage routing and a deep groundwater store
(Tague et al., 2008). The RHESSys model is able to simulate interactions between carbon, water and
nutrient fluxes and climate patterns within a mountainous environment. Water is explicitly routed
between spatial patches, representing spatial heterogeneity in soil moisture and lateral water flux
to the stream. The RHESSys hydrologic process models have been adapted from several pre-existing

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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Fig. 6. Annual minimum and maximum air temperature aggregated over the Mad  River near Moretown watershed (USGS
gauge  # 04288000). Historical climate data obtained from Maurer et al. (2002), while scenario (RCP 8.5) climate data
of  five climate models were obtained from the Coupled Model Intercomparison Project phase 5 (CMIP5) ensembles
(http://gdo-dcp.ucllnl.org/downscaled cmip projections/dcpInterface.html). Maurer et al. data are depicted in red and blue
colors  for maximum and minimum air temperatures respectively.

models and they include snow accumulation and melt, interception, infiltration, transpiration, soil
and litter interception, evaporation and shallow and deep groundwater subsurface lateral flow. Most
processes are run at a daily time step.

For this work, we used the routing approach adapted from the Distributed Hydrology Soil and Vege-
tation Model (DHSVM) (Wigmosta et al., 1994) to route the water laterally. The DHSVM routing model
simulates saturated subsurface interflow and overland flow via pixel-by-pixel basis connectivity. An
important modification from the grid-based routing of DHSVM is the ability of RHESSys to route water
between arbitrarily shaped surface elements. This allows greater flexibility in defining surface patches
and varying shape and density of surface tessellation. Then a reasonable approximation of reality in
simulating lateral moisture routing at the level of spatial data resolution employed is achieved.

RHESSys partitions the landscape into distributed elements hierarchically organized into basin
(watershed), zone, hillslope, patch and stratum. In this work, zones representing climate information
have been partitioned following the 1/8th degree climate grid from Maurer et al. (2002). There are
eight different zones spanning our study watershed. Hillslopes were generated using the watershed
analysis routine (r.watershed) in GRASS (GRASS Development Core Team, 2012) with contributing area
threshold of 21,600 m2 resulting in 16,560 hillslopes. We  obtained the stream network contributing
area threshold objectively from a stream drop test following theory described in Tarboton et al. (1991,
1992). Each hillslope was treated as a single model element (i.e., patch). Stratum is used for canopy
information and inherits the patch spatial setting (i.e., hillslope in this work).

RHESSys uses the Mountain Microclimate Simulator (MTN-CLIM) model (Running et al., 1987) to
obtain spatially variable climate inputs. Daily climate data of minimum and maximum air temperature
as well as precipitation drive RHESSys flux estimates. The MTN-CLIM model simulates radiation, par-
titioning of rain and snow, saturation vapor pressure, and relative humidity. MTN-CLIM extrapolates
meteorological variables from the point of measurements to the modeling unit of interest (hillslope)
making corrections for differences in elevation, slope and aspect between the point of measurements
and targets (hillslopes). Lapse rates used in this work to adjust air temperatures and dewpoint spatially
are 0.01 and 0.0015 ◦C/m, respectively.

Canopy heights and species specific vegetation parameters (Myers and Edminster, 1972; Kaufmann
and Troendle, 1981; Ryan, 1990; White et al., 2000; Rueth and Baron, 2002) are available as standard

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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Table 2
Streamflow regime variables used to examine climate changes impacts.

Variable name Symbol Definition Streamflow classification

Daily mean discharge QMEAN Average daily flow over a
water year

Static basin descriptor

High  flow disturbance Q1.67 Flow of magnitude exceeding a
return interval of 1.67 years
based on a log-normal
distribution

High flow disturbance

Flood duration FLDDUR The average number of days
per year when flow equals or
exceeds Q1.67

7  day maximum flow 7QMAX The average annual maxima of
7  day means of daily mean
streamflow

Base flow index BFI The ratio of the annual lowest
daily flow to the average daily
flow multiplied by 100 during
a water year

Low flow disturbance

7  day minimum flow 7QMIN The average annual minima of
7 day means of daily mean
streamflow

Coefficient of variation DAYCV The ratio of the standard
deviation of daily flows to the
average of daily flows
multiplied by 100 during a
water year

Flow variability and
predictability

Flow  reversal R The average number of daily
flow reversals per year

Colwell index of Predictability P Predictability of flow using an index
developed by Colwell (1974) which is
based on information theory

Colwell index of Constancy C
Colwell index of Contingency M

RHESSys libraries. The six vegetation categories grouped for the study watershed were linked with
vegetation parameters from RHESSys libraries.

Initial leaf area index (LAI) values at the hillslope level for our study watershed were found by
reclassifying specific vegetation classes with LAI values. LAI values for each vegetation class used for
reclassification were obtained from White et al. (2014) and suggested literature over the study region
(Dingman, 2002, Table 7–5). The aggregate average LAI over the study watershed is about 4.6.

RHESSys uses many parameters to describe typical soil, vegetation and land use characteristics.
Literature-based estimates have been used to compile parameters for common vegetation and soil
types. Calibrated parameters within RHESSys are (1) the decay of hydraulic conductivity with depth
(m), (2) saturated soil hydraulic conductivity at the surface (k), (3) the fraction of recharge that bypasses
the shallow subsurface flow system to deeper groundwater storage (gw1), and (4) the drainage rate
of deeper groundwater store (gw2).

2.5. Flow regime

In this paper, we examine three streamflow classes and how they change with climate at the Mad
River near Moretown streamflow gauge (watershed outlet). The streamflow classes studied are high
flow disturbance, low flow disturbance and flow variability and predictability (Table 2).

High flow disturbance streamflow metrics include three streamflow variables: a high flow disturb-
ance variable (Q1.67), a flood duration (FLDDUR) variable, and a seven-day maximum flow (7QMAX)
variable. Dunne and Leopold (1978) define bankfull stage as “the stage that corresponds to the dis-
charge at which channel maintenance is the most effective, that is, the discharge at which moving
sediment, forming or removing bars, forming or changing bends and meanders, and generally doing
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work results in the average morphologic characteristics of channel.” Wolman and Miller (1960) con-
cluded that the bankfull stage is the most effective or is the dominant channel forming flow. There is a
wide agreement that on average a bankfull flow has an average recurrence interval of 1.5 years, how-
ever Poff (1996) and Chinnayakanahalli et al. (2011) cite that a flow with a 1.67 year return interval is
often recognized as bankfull flow. The Q1.67 flow is defined as a flow of magnitude exceeding a return
interval of 1.67 years based on fitting a log-normal probability distribution to the annual maximum
daily flow series then selecting the value that has a probability of exceedance of 1/1.67 (Dunne and
Leopold, 1978). Historical streamflow data (1955–2013 water years) at the study watershed gauge
suggest that Q1.67 for the study gauge is about 24 millimeter per day (3,587 cfs). Flood duration (FLD-
DUR) is usually calculated as the average number of days per year when flow equals or exceeds Q1.67
flow. For the historical streamflow period studied, the mean flood duration for the study watershed
using a return flow of 24 mm/day is less than one day.

Since the Mad  River watershed is flashy, estimating the magnitude of daily return flow
that we can use in calculating flood duration periods is quite challenging (floods last only
several hours). The National Weather Service (NWS) flood stage guidelines at our watershed
(http://water.weather.gov/ahps2/hydrograph.php?wfo=btv&gage=moov1), accessed on 26 February
2014, indicate that nine feet is the threshold stage for flood warning. We  thus take the Mad River
near Moretown streamflow gauge bankfull stage as nine feet. We  extracted all the days when stage at
our watershed was equal to or exceeded 9 feet from the historical instantaneous crests record during
1927–2013 provided by the USGS. The instantaneous flood peak flows vary from four to 166 mm/day
(i.e., 530–24,300 cfs). We  examined the daily runoff values at these flooded days. We found that the
daily runoff at these flooded days varies from about 1 to 44 mm/day (i.e., 160–6,140 cfs) with 25th

percentile at 15 mm/day (2,175 cfs) and 50th percentile at 24 mm/day (3,575 cfs). Mapping historical
crest data on daily flow data is more realistic in terms of capturing flood duration rather than just
relying on the Q1.67 discussed earlier. The threshold used to calculate flood duration periods for this
work was set as 15 mm/day (25th percentile).

A simple way to depict a distribution is to examine a histogram. A histogram counts the num-
ber of occurrences within predefined bins. However, identifying modes from the histogram requires
visual interpretation and is somewhat subjective because of the choice of bin width. Silverman (1986)
presented nonparametric density estimation methods that can depict the distribution of data more
generally and objectively. Kernel methods are popular nonparametric approaches that we have used
here to show different flood scenarios. The kernel methods are most sensitive to the selection of band-
width (h). There are multiple methods that give estimates for the bandwidth (h) (Silverman, 1986;
Sheather and Jones, 1991; Scott, 1992). Here we used the Sheather and Jones method implemented
by the R statistical software package to select bandwidth (h) (R Development Core Team, 2014) and a
Gaussian function for the kernel.

Seven-day maximum flow (7QMAX) is the average across years of 7-day maximum streamflow. For
each year in the period of record, the maximum 7-day mean is found from the daily mean streamflow
and the maximum is the 7-day maximum flow for that year. A 7QMAX is the average of those yearly
7-day maximum values and for the historical data; it is about 10 millimeters per day (1,513 cfs).

Low flow disturbance streamflow metrics include a baseflow index for a measure of changes in
base flow (BFI) variable and a 7-day minimum (7QMIN) variable. Baseflow index (BFI) is the ratio
of the annual lowest daily flow to the average flow multiplied by 100. BFI is a low flow variable that
indexes flow stability and susceptibility to drying. Historical streamflow data suggests that the median
of BFI at the study gauge is about 9%. Seven-day minimum flow (7QMIN) variable is the average across
years of 7-day minimum streamflow. For each year in the period of record, the minimum 7-day mean
is found from the daily mean streamflow and the minimum is the 7-day minimum flow for that year.
A 7QMIN is the average of those yearly 7-day minimum values and for the historical data; it is about
one millimeter per day (199 cfs).

Flow variability and predictability streamflow metrics include a coefficient of variation (DAYCV)
variable, a flow reversal (R) variable and three flow variables defining the Colwell index which are
Predictability, Constancy and Contingency (Colwell, 1974). Flow reversal events are often related
to physical disturbance in stream ecology (Resh et al., 1988). Streamflow variability exerts control
over many important structural attributes in streams (e.g., habitat volume, current velocity, channel

http://water.weather.gov/ahps2/hydrograph.php?wfo=btv&gage=moov1
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geomorphology, and substratum stability). Temporal patterns of streamflow are important in the
fluctuating physical and biological environment of rivers (Lazzaro et al., 2013).

Coefficient of variation (DAYCV) is the standard deviation of daily flows divided by the average
of daily flows multiplied by 100 during a year. The DAYCV describes overall flow variability without
considering the temporal sequence of flow variation. Historical data suggests that the median of DAYCV
at the study watershed is about 137%, which suggests a high rate of streamflow change (flashiness).

Flow reversals (R) are defined from the daily mean streamflow as days when the trend (increasing
or decreasing) from the previous days is reversed. Historical streamflow data from the study gauge
gives the median of R as about 125 days.

Flow predictability metrics were developed (Colwell’s indices, Colwell, 1974) to assess biologically
relevant measures of flow variability. The principal value of the Colwell index used in our work is for
comparison of the uncertainty of the variable river environment projected in future. The Colwell index
is also useful for the association of natural variation in flow regime with aquatic macroinvertebrate taxa
richness and composition within the ecological community (Poff and Ward, 1989; Chinnayakanahalli
et al., 2011). Stream ecologists are often interested in this theory because of the great temporal vari-
ability within and between river ecosystem environments. Colwell (1974) procedure is analogous to
autocorrelation analysis and to some aspects of harmonic analysis. The Colwell’s predictability (P) is
the sum of constancy (C) and contingency (M). Constancy (C) is a measure of temporal invariance, and
contingency (M) is a measure of periodicity. Constancy is defined similar to predictability, except that
seasonal variability across periods is disregarded. Contingency is defined as the degree to which time
period and value group are dependent on each other. The P, C, and M are scaled to range from 0 to 1
(further details on Colwell index are presented at Appendix B).

Calculation of Colwell’s indices requires that streamflow values be binned into discrete groups.
As with all information measures absolute values are dependent on this binning, but a consistent
binning allows relative comparisons. Following Gordon et al. (2004) and Chinnayakanahalli et al.
(2011), we used 7 bins (<0.5 �, 1.0 �, 1.5 �, 2.5 �, 3.0 �, >3.0 �), where � is equal to the mean of
daily streamflow values, to define groups for each month. We  used twelve months to represent the
seasonal cycle and counted the number of occurrences of daily streamflow values in states defined by
groups (bins) and periods (months). Analysis of the Mad  River watershed historical streamflow data
(1955–2013 water years) using these metrics indicates that the flow has a low predictability (P ≈ 0.25)
The Constancy (C) at the observed historical predictability is 0.23. Fish species observed at the Mad
River mouth (i.e., warm water fish habitat) are Brook trout, Longnose dace, and Slimy sculpin. We  infer
that the observed low Colwell’s predictability calculated is suitable to maintain the above-mentioned
species.

3. Results

3.1. Model calibration and verification

In this work, the model was calibrated to daily streamflows at the watershed outlet during three dif-
ferent water years (wet, average and dry) in order to assess model performance over a range of climatic
conditions. The wet water year selected for model calibration has annual precipitation of 1445 mm.
Monte Carlo simulation was used to generate 5500 sample parameter sets from independent uniform
distributions over the feasible parameter ranges determined from the literature ranges for m,  k, gw1,
and gw2 parameters. Each sample parameter set was  used as an input to the model, and model per-
formance was assessed using the Nash–Sutcliffe efficiency metric on daily flows (NS), Nash–Sutcliffe
efficiency metric on log daily flows (NSlog) and total annual flow error (Qerr). We  repeated this step
for the remaining selected water years (average and dry) and results were shown in Fig. 7 (average
water year). We  note that model results were more sensitive to changes in values of gw1 and gw2
parameters than to changes in the other parameters. The saturated soil hydraulic conductivity at the
surface (k) parameter depicted in Fig. 7 is a multiplier of hydraulic conductivity at the surface for both
soil texture types used in the watershed soil texture map  (sandyclayloam soil hydraulic conductivity
at the surface used was about 0.544 m/day, while clay hydraulic conductivity at the surface used was
about 0.111 m/day).
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Fig. 7. Five thousand and five hundred Monte Carlo simulation sample parameter sets over the literature parameter ranges
for  RHESSys calibration parameters (m,  k, gw1, and gw2). Nash–Sutcliffe efficiency metric on daily flows (NS), Nash–Sutcliffe
efficiency metric on log daily flows (NSlog-transformed) and annual flow error (Qerr) metrics were used to pick a reasonable set
of  RHESSys calibration parameters. An average water year observed runoff record was used for calibration.
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Fig. 8. Selected group of behavioral parameter sets and their calibration metrics that were used for model simulations. A nine
behavioral parameter sets comprised of (m (m), k, gw1 (%), and gw2 (%)) were shown in table (upper right).

To address the equifinality concept, which states that there may  be many models of a catchment
that acceptably reproduce observations, we selected a group of behavioral parameter sets from the
Monte Carlo simulations (Fig. 7) that had a percent error (Qerr) of −5.0% ≤ Qerr ≤ 5.0%, a Nash–Sutcliffe
efficiency on daily flows (NS ≥ 0.75), and a Nash–Sutcliffe efficiency on log daily flows (NSlog ≥ 0.60).
Nine behavioral parameter sets were identified that satisfied all the three mentioned conditions over
the three different water year conditions (dry, average and wet). Fig. 8 gives a plot of the nine behav-
ioral parameters sets selected with model performance metrics. In Fig. 8, we list at the upper right
corner the nine behavioral parameters with values of m (m), k, gw1 (%), and gw2 (%). We  give the
model performance metrics corresponding to the different water years (dry, average, and wet) for



I.N. Mohammed et al. / Journal of Hydrology: Regional Studies 3 (2015) 160–186 173

0 100 200 300 400

0
10

0
20

0
30

0
40

0

S
im

ul
at

ed
 (

m
m

)

Observed (mm)

Fig. 9. Scatterplot of monthly observed and simulated runoff in mm for the Mad  River near Moretown watershed (USGS gauge
#  04288000) in verification of RHESSys during 1955 to 2010 water years. RHESSys parameters used to drive model simulations
runoff results were: m = 2.057 (m), k = 2.542, gw1 = 6.8 (%), and gw2 = 1.6 (%).

each behavioral parameters set in red, green, and blue colors respectively. The model performance
metrics shown in Fig. 8 are the Nash–Sutcliffe efficiency (NS) for daily simulated and observed runoff,
the Nash–Sutcliffe efficiency (NSlog) for daily simulated and observed runoff in log-scale, and the per-
cent error (Qerr) between daily simulated and observed runoff. We  note that the average water year
model solutions capture most of the variance observed compared with dry and wet  years model solu-
tions (NSaverage ≈ 0.84). Wet  water year model solutions total annual flow error estimates achieved a
close match with observed runoff values (QerrWet ≈ 0%).

Fig. 9 shows monthly observed and simulated runoff for the study watershed as verification of
RHESSys model performance during 1955–2010 water years. As seen in Fig. 9, model performance
is robust. The verification period used was from water year 1955 to water year 2010. In general, all
the selected behavioral parameter sets are able to explain more than 60% of the variance seen in
observed daily runoff, and underestimate observed runoff by about 4%. Model results generated from
each of the nine behavioral parameter sets show that patterns and trends of simulated runoff were
consistent.

Simulated runoff results with m = 23.9 (m), k = 1.132, gw1 = 2.5 (%), and gw2 = 84.2 (%) parameter set
(i.e., group I in Fig. 8) are able to explain about 79% of the variance seen in observed daily runoff during
the calibration dry year, about 84% of the variance seen in observed daily runoff during the calibration
average year, and about 79% of the variance seen in observed daily runoff during the calibration wet
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Fig. 10. Daily simulated versus observed runoff (mm)  for the Mad  River near Moretown watershed in calibration of RHESSys.
Wet  [row (a)], average [row (b)] and dry [row (c)] water yield year results are shown. Right panels give cumulative runoff
(observed and simulated), evapotranspiration and storage simulated with observed precipitation during corresponding year to
the  left.

year (Fig. 10). Dry year water yield (panel a), average year water yield (panel b) and a wet year water
yield (panel c) are shown in Fig. 10. We  also present cumulative simulated runoff, evapotranspiration
and storage (offset to be zero at the start) as well as observed precipitation and runoff. The model
captures most of the variability seen in daily runoff during spring but to a lesser degree during summer
time. This is shown with the Nash–Sutcliffe efficiency of log-transformed daily runoff values of 0.79
(panel a), 0.84 (panel b), and 0.76 (panel c).
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Table 3
Annual precipitation at the Mad  River watershed during 1951–2005 water years Mann Kendall trend analysis. � is the arithmetic
mean in meters, � is unbiased standard deviation in meters, CV is coefficient of variation (�/�), � is correlation between gridded
data  (Maurer et al., 2002) and the CMIP5 ensemble, � (tau) is Kendall’s tau correlation coefficient, p-value is 2 sided-test, Trend
is  Highly Significant when (p ≤ 0.001) and Significant when (p ≤ 0.05).

Data source/climate model ID � � CV � � (tau) p-Value Trend

Maurer et al. 1.209 0.192 0.159 – 0.3859 0.00003 Highly significant
ACCESS1-0 1.192 0.104 0.087 0.011 0.0128 0.89603 No trend
BCC-CSM1-1 1.189 0.108 0.091 0.077 0.0492 0.60119 No trend
BNU-ESM 1.199 0.113 0.095 0.318 0.2162 0.02018 Significant
CanESM2 1.193 0.117 0.098 0.064 0.0626 0.50421 No trend
CCSM4 1.200 0.105 0.088 −0.077 0.0303 0.74941 No trend
CESM1-BGC 1.200 0.094 0.079 0.208 0.2040 0.02835 Significant
CNRM-CM5 1.193 0.111 0.093 0.180 0.1960 0.03527 Significant
CSIRO-Mk3-6-0 1.203 0.133 0.111 0.126 −0.0020 0.98842 No trend
GFDL-CM3 1.200 0.101 0.084 −0.205 0.0626 0.50421 No trend
GFDL-ESM2G 1.197 0.099 0.082 0.025 0.1300 0.16337 No trend
GFDL-ESM2M 1.198 0.117 0.097 0.158 0.1582 0.08937 No trend
INM-CM4 1.189 0.107 0.090 −0.063 0.1205 0.19629 No trend
IPSL-CM5A-LR 1.201 0.111 0.092 0.168 0.2485 0.00755 Significant
IPSL-CM5A-MR 1.197 0.093 0.078 0.033 0.1098 0.23958 No trend
MIROC-ESM 1.194 0.093 0.078 −0.062 0.0909 0.33066 No trend
MIROC-ESM-CHEM 1.202 0.108 0.090 −0.161 0.0653 0.48586 No trend
MIROC5 1.184 0.123 0.104 0.008 −0.0397 0.67372 No trend
MPI-ESM-LR 1.196 0.112 0.094 0.075 0.0007 1.00000 No trend
MPI-ESM-MR 1.184 0.105 0.089 0.027 −0.0478 0.61134 No trend
MRI-CGCM3 1.198 0.100 0.083 0.124 0.1407 0.13105 No trend
NorESM1-M 1.195 0.082 0.068 0.079 0.2094 0.02442 Significant

3.2. Global climate models historical trends and variabilities

An analysis of twenty-one hindcast CMIP5 model output datasets was  performed to assess the
variability and trend of each dataset compared to the observed historical data of Maurer et al. (2002).
The precipitation coefficient of variation (CV) and trend (represented by Kendall’s tau) are presented in
Table 3. As noted by the discrepancy in Kendall’s tau compared to the observations, none of the CMIP5
datasets adequately reproduces the observed precipitation trend. Only five CMIP5 model outputs show
a statistically significant increasing trend (which is far lower in magnitude than the observed), and
those five are chosen as a subset on that basis for further analysis in this work. Moreover, comparison
of the precipitation coefficient of variation of the CMIP5 and observed data sets shows that none of
the CMIP5 models adequately reproduces the observed variability, which limits the ability to simulate
extreme events.

The failure of the hindcast climate data to reproduce the observed trend calls into question the
validity of the precipitation forecast data as an adequate driver of hydrology models for the simulation
of climate change impacts. Therefore, for an alternate scenario, we  superimposed the observed trend
in the historical precipitation (+7 mm/year) on the relatively flat CMIP5 precipitation data for use as a
driver of the hydrology model presented in this work. This approach assumes that the observed trend
will continue unchanged in the future, and allows assessment of the possible hydrologic flow regime
resulting from increasing precipitation. Hydrology model simulation results using both altered and
unaltered precipitation input time series are compared to emphasize the importance of trend in the
CMIP5 data. The CMIP5 products reproduce observed temperature trends, which were left unaltered.

The RHESSys model was run in a retrospective mode to produce historical runoff simulations using
the historical CMIP5 climate data (1955–2005) as a climate driver. The annual runoff simulations
(retrospective climate data from five climate models under two scenarios) show a different trend and
variability when compared to historical observed runoff data (Fig. 11). Fig. 11 shows both time series as
well as distributions (represented by boxplots) to illustrate these differences in trend and variability.
Mean annual runoff from all climate models was close to observed runoff. However, interquartile
annual runoff range of all climate models tested was less than observed annual runoff. Not surprisingly,
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Fig. 11. Annual observed and retrospective simulated runoff at the Mad  River near Moretown watershed (USGS gauge #
04288000). Data are runoff for the water years 1955–2005. Runoff simulations were obtained by hindcasting the RHESSys
model with five climate models from the CMIP5 ensembles data and the nine behavioral sets discussed. Trends shown were
obtained using the local polynomial regression fitting (loess) function with default parameters in R software package.

climate model-driven runoff simulations have clearly underestimated the historical observed runoff
trend because of the lack of trend in CMIP5 precipitation data. Differences in trends are visualized
using local polynomial regression fitting function (loess) evaluated from the default parameters in the
R software package (Cleveland et al., 1992; R Development Core Team, 2014). These results (Fig. 11)
show that climate model data have not succeeded in producing historical observed runoff trends and
variabilities when applied on a regional scale study.

3.3. Model prediction

Runoff simulations shown in Figs. 12–15 were obtained by driving the RHESSys model with ensem-
bles from: (i) the subset of five CMIP5 climate models that show significant trend in precipitation, and
(ii) the five climate models from the CMIP5 with the superimposed trend as described earlier (Section
2.3). In both of the two sets of ensembles, we considered the two  climate scenarios (RCP 4.5 and RCP
8.5). The five climate models shown in Figs. 12–15 are, a: BNU—ESM; b: CESM1—BGC; c: CNRM—CM5;
d: IPSL—CM5A—LR; and e: NorESM1—M.  A noticeable increase in number of flooded days has been
observed. In addition, a repeated pattern of flood occurrences is evident across all the climate model
studies with variations in duration.

Fig. 12 shows kernel density estimates of the distribution of maximum flood duration days at our
study watershed, using the flood threshold of 15 mm/day (2,175 cfs). The 1964–2013 line in Fig. 12
is the kernel density estimate of flood duration days using the flood threshold of 15 mm/day during
1964–2013 water years. Future (i.e., 2016–2099 water years) kernel density estimates of flood duration
days were obtained by driving the RHESSys model with five climate models from the CMIP5 ensembles
(subscript 1) as well as the superimposed trend ensembles (subscript 2) considering the two scenarios
(i.e., RCP 4.5 and RCP 8.5)  and the nine behavioral sets discussed. The estimated bandwidth that the
Sheather and Jones (1991) method gives for the various distributions shown in Fig. 12 vary between
0.1 and 1.7 days. For consistency, so that mode differences are not due to bandwidth differences, Fig. 12
was plotted using the average bandwidth of 0.8 days. To check sensitivity to bandwidth, we  also plotted
density estimates with range of bandwidths spanning 0.1–1.7 days and obtained figures (not shown)
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Fig. 12. Kernel density estimate of the flood duration in days at the Mad  River near Moretown watershed (USGS gauge #
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Fig. 13. Seven-day maximum flow at the Mad  River near Moretown watershed (USGS gauge # 04288000). Right panels give
boxplots of seven-day maximum (7QMAX) data for the historical (1955–2013) and simulated (2016–2099) water year runoffs.
Panels  numbered with 1 refer to the CMIP5 ensembles, while panels numbered with 2 refer to the CMIP5 with superimposed
trend ensembles.
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Fig. 14. Base flow index (BFI) at the Mad  River near Moretown watershed (USGS gauge # 04288000). Right panels give boxplots
of  base flow index data for the historical (1955–2013) and simulated (2016–2099) water year runoffs. Panel number follows
naming convention used earlier in Fig. 13.

that were very similar to Fig. 12, with modes at the same locations. We  therefore concluded that
interpretations were not sensitive to the selection of bandwidth in the range resulting from different
data lengths. We  also looked at time series plots for the abovementioned distributions (not shown)
and found that roughly every 25 years there is a peak in number of flooded days. Our results, using
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Fig. 15. Colwell index, Predictability (P), Constancy (C), and Contingency (M)  of runoff at the Mad River near Moretown water-
shed (USGS gauge # 04288000). Data are daily runoff for the water years 1955–2013 (historical) and simulated runoff for the
water years 2016–2099 (future). Panel number follows naming convention used earlier in Fig. 12.
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a superimposed increasing precipitation trend reflected in the historical record, predict four more
flooded days in the coming century relative to the hindcast period.

Using the unaltered CMIP5 data as input (RCP 4.5 and RCP 8.5), model results do not show a sig-
nificant change in the highest flows (7QMAX), despite future projections of increased precipitation
in the region (Fig. 13, part 1). This may  represent the role of soil moisture or snowpack dynamics.
However, a significant change is shown for the case of superimposed precipitation trend ensembles.
Results suggest that the median of the seven maximum runoff 7QMAX will change by 30% in the future
(Fig. 13, part 2).

We  also assessed climate-induced changes in low flow disturbances. Our results suggest that both
variables that quantify low flow disturbances (BFI and 7QMIN) showed a significant increase in the
future. We  noted an increase of about three orders of magnitude in the base flow index variable
(Fig. 14). This increase in low flow regime is evident through the use of all the climate models studied.
In Fig. 14, we show boxplots of historic and future base flow indices to illustrate the degree of increased
change. The timing associated with this increase is during summer (June 21th to September 20th). The
7-day minimum (7QMIN) variable behavior has not been shown since it conveys the same information.
This finding is consistent with the recent observation of Hodgkins and Dudley (2011) indicating that
the latter half of the twentieth century has witnessed an increase in summer flows in New England.

Model predictions did not indicate a significant change in flow reversal days under future climate
scenarios. Some models suggest decreased number of reversal days while others suggest increased
number of reversal days. We  think that the quality of our prediction results did not succeed to manifest
a clear flow variability signal (input climate data and model efficiency to capture streamflow variance).
These results convey a limitation of our modeling efforts to assess stream banks damages anticipated
with climate change.

Model output shows a 60% increase in the Colwell index runoff predictability metric for the
2015–2099 water years period among all models tested. Both constancy and contingency are shown
as bar plots in Fig. 15 to illustrate the Colwell index components. We  note that the contingency is min-
imal which means that the probability of occurrence of each flow state is independent of the month
(homogenous monthly flow time series). We  infer that expected runoff at this study watershed would
have a different monthly pattern or distribution compared to historical data observed. Monthly runoff
pattern change will affect the quality of the watershed habitat and cause ecological consequences on
fisheries populations.

4. Discussion

The CMIP5 data products (Taylor et al., 2011; Meehl et al., 2014) are widely used for regional climate
change impacts analysis. However, for our study area in northwestern New England, only five climate
models showed statistically significant trends in precipitation in hindcast, but the magnitude of these
trends are not adequately representative of those seen in observed annual precipitation. To address
this discrepancy in historical precipitation trend, we extrapolated the observed historical precipitation
trend to provide an upper envelope of predictions of future hydrological impacts associated with
climate change. The use of an extrapolated observed trend cannot capture regional climate patterns
induced by large-scale changes in circulation or decadal-scale climatic oscillations (such as the North
Atlantic Oscillation or Arctic Oscillation), and therefore future datasets with extrapolated trends must
be used with great caution. However, it is clear from this analysis that CMIP5 products are insufficient
for regional hydrologic analysis in Vermont because the trend and variability are underrepresented.
The use of any of the twenty-one CMIP5 models available would lead to runoff simulations that show
no change in high flows. Such a conclusion could erroneously be used as a basis for a “do nothing”
approach by policy makers for adaptation to climate change, when in fact increasing precipitation
can cause numerous adverse hydrologic impacts, such as an increased flood risk and exacerbated
nonpoint source pollution. We  demonstrate the large difference in flow regime when using the CMIP5
data with a superimposed trend compared to only unaltered CMIP5 data using the best five datasets.
The near-term (4–5 decades) predicted flows using the superimposed trend dataset may  be useful for
design and planning as a basic scenario for adaptation to climate change in high gradient watersheds
in northwestern New England.



180 I.N. Mohammed et al. / Journal of Hydrology: Regional Studies 3 (2015) 160–186

In addition to the lack of a reproduced trend in precipitation, recent work has described the failure
of the CMIP5 data to capture increased intensity, duration and frequency of precipitation extremes,
which is consistent with our finding of inadequate representation of variability in the precipitation
process in Vermont (Wuebbles et al., 2013). Therefore, the changing probability of the uppermost
quantiles is not well represented using our approach. The mean, variability, and skewness of flow are
all expected to change with climate change, but the presented approach only allows for changes in
the first two moments.

Our approach to projecting future flow regime in northwestern New England has not incorporated
the nonlinear interconnectivity and feedbacks between climate variables and vegetation cover. More-
over, the hydrological model used in our approach did not include incorporation of impacts of increased
CO2 concentrations on stomatal physiology of forests, changes in species composition or distribution,
and the response of leaf area index to climate change. Vegetation feedbacks could act in various ways
to exacerbate or offset our projected changes in streamflow. CO2 fertilization would be expected to
reduce stomatal conductance and increase water use efficiency, thereby decreasing evapotranspira-
tion (ET) and increasing streamflow during the growing season, as discussed by Campbell et al. (2011),
though their model projections of streamflow incorporating CO2 fertilization resulted in increasing
trends in future ET at the Hubbard Brook Experimental Forest in nearby New Hampshire. Warmer con-
ditions in the future might alternatively lengthen the growing season for forests in the region (Betts,
2011; Richardson et al., 2012; White et al., 2014). A future trend of lengthened leaf-on period would
result in days to weeks of extended ET, offsetting some of the increased future precipitation and mit-
igating against increasing baseflow. A more complex and yet unexamined impact of climate change
on vegetation-water relations would be associated with changes in forest health and species com-
position that would drive changes in ET demands and resulting streamflow. Declining forest health
and associated reductions in ET could lead to increases in baseflow greater than the levels we  project
here. The step changes in the base flow index projected in our simulations are driven by the projected
linear trend in increasing precipitation and do not include these more complex vegetation-climate
interactions that may  alter future streamflows. In general, our ability to project flow regime should
be assessed considering this uncertainty.

Our results suggest a repeated pattern of flood occurrences with increased frequency. Some studies
have suggested that this repeated mode of flood occurrences in our study region is correlated with
climate index occurrences at the region such as the North Atlantic Oscillation (NAO) (Huntington et al.,
2004; Griffiths and Bradley, 2007; Brown et al., 2010). This repeated phenomenon of flood occurrences
may likely be attributed to hemispheric scale and potentially regional scale atmospheric circulation
patterns, however the expected warmed climate may  influence these atmospheric circulation indices
themselves, hence there is great uncertainty in future flood signals (Visbeck et al., 2001).

Flow variability is an important aspect of the streamflow regime. There is an ongoing discussion
within the Lake Champlain management community as well as the state and federal environmental
protection agencies concerning the Lake Champlain sediment and nutrient loads (Stager and Thill,
2010). The anticipated future increased maximum flows will likely greatly exceed current sediment
and nutrient loading to the Lake, continuing a trend of declining water quality in Lake Champlain (Lake
Champlain Basin Program, 2012).

The Mad  River watershed physical habitat is for Brown and Brook trout, Longnose dace, and Slimy
sculpin but in some reaches, the water quality limits fish populations. Fish populations inhabiting
Vermont streams and rivers in general have adapted to flooding (Kirn, 2011). However, given the
expected changes in climate (temperature increase) and the associated streamflow temporal patterns
change (Colwell’s predictability increase) the future adaptation should be considered. The anticipated
hydrological impacts presented herein may  assist ongoing research that investigates these ecological
responses to climate change in Lake Champlain ecosystem (Warren et al., 2012).

The presented work critically assesses the ability of the CMIP5 ensemble to adequately capture
the dynamics of climate conditions over the historic period at our study region for use in hydrologic
impact analysis. Our future simulation results highlight the substantial differences between the use of
CMIP5 and trend-extrapolated observations, underscoring the need to be very cautious when applying
climate model products for regional analysis. However, the prediction results presented in this work
should be viewed as best estimates of what is available. Understanding changes in streamflow regime
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requires a better knowledge of climate data, runoff models parameters, and representation of physical
processes. In order to obtain that knowledge, extensive field efforts intended to examine hydrological
model sensitivities to climate and hydrological model parameters are required.

5. Conclusions

Using the CMIP5 climate data for regional hydrologic analysis to make runoff projections to inform
planning and policy would be fundamentally problematic if the climate models are not adequately
validated for a region of interest. Many of the forcing CMIP5 data fail to capture both the trends
and variability observed in precipitation when run in hindcast. This study has shown the potential
differences in simulated flow metrics if the CMIP5 data is applied uncritically, and shows that CMIP5
fails to capture trends toward increased precipitation in Vermont.

Nevertheless, when driven by the CMIP5 data corrected for trend, the hydrological model used
in this study predicts an increase in high flows, low flows, and a decrease in the uncertainty seen in
temporal patterns of runoff during the 21st century for central Vermont. The trend-corrected sim-
ulation shows an increase of 30% in seven-day maximum flow, four days increase in flooded days,
three orders of magnitude increase in base flow index, and a 60% increase in runoff predictability. The
above-mentioned results reflect the need to adapt to increased flood risk, updated floodplain man-
agement, exacerbated nonpoint pollution loading to Lake Champlain, and other problems associated
with higher future flows.
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3 7

Appendix A.

The World Climate Research Programme (WCRP) developed global climate projections through its
Coupled Model Intercomparison Project 5 (CMIP5). We  examined twenty-one projection ensembles
of CMIP5 downscaled by the daily bias-correction and constructed analogs (BCCA) statistical down-
scaling technique available at (http://gdo-dcp.ucllnl.org/downscaled cmip projections/) accessed on
27 May  2014 and listed in Table A1. Mann Kendall trend analysis (Helsel and Hirsch, 2002) was  used
to examine whether any trends in precipitation data were statistically significant. Table 3 gives trend
analysis results for the historic observed annual precipitation (Maurer et al., 2002) as well as the CMIP5
projection ensembles hindcast data over our study watershed. This table includes the mean annual
precipitation, �, the annual standard deviation, �, the coefficient of variation, CV,  the cross correlation
between climate model ensembles and observed precipitation, �, the Kendall’s tau correlation coeffi-
cient, �, as well as the p-value associated with the Mann Kendall test. Table 3 shows that they are five
climate model ensembles with significant increasing trend (p < 0.05) in annual precipitation. Namely,
these five climate modeling centers are: the College of Global Change and Earth System Science, Beijing
Normal University (BNU—ESM); the Community Earth System Model Contributors (CESM1—BGC); the
Centre National de RecherchesMétéorologiques/Centre Européen de Recherche et Formation Avancée
en CalculScientifique (CNRM—CM5); the Institut Pierre-Simon Laplace (IPSL—CM5A—LR); and the Nor-
wegian Climate Centre (NorESM1—M). Among the twenty-one projection ensembles analyzed, these

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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Table A1
Coupled Model Intercomparison Project (CMIP5) groups studied.

No. Modeling center (or group) Institute ID Model name

1 Commonwealth Scientific and Industrial Research
Organization and Bureau of Meteorology, Australia

CSIRO-BOM ACCESS1-0

2  Beijing Climate Center, China Meteorological
Administration

BCC BCC-CSM1-1

3  College of Global Change and Earth System Science,
Beijing Normal University

GCESS BNU-ESM

4  Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2
5  National Center for Atmospheric Research NCAR CCSM4
6  Community Earth System Model Contributors NSF-DOE-NCAR CESM1-BGC
7  Centre National de Recherches

Météorologiques/Centre Européen de Recherche et
Formation Avancée en Calcul Scientifique

CNRM-CERFACES CNRM-CM5

8  Commonwealth Scientific and Industrial Research
Organization, Queensland Climate Change Centre of
Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0

9 NOAA Geophysical
Fluid Dynamics
Laboratory

NOAA GDFL GFDL-CM3
10  GFDL-ESM2G
11  GFDL-ESM2M

12  Institute for Numerical Mathematics INM INM-CM4

13 Institut Pierre-Simon
Laplace

IPSL IPSL-CM5A-LR
14 IPSL-CM5A-MR

15 Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and
National Institute for Environmental Studies

MIROC MIROC-ESM
16  MIROC-ESM-CHEM

17  Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC MIROC5

18 Max-Planck-Institut für Meteorologie (Max
Planck Institute for Meteorology)

MPI-M MPI-ESM-LR
19 MPI-ESM-MR

20  Meteorological Research Institute MRI  MRI-CGCM3
21  Norwegian Climate Centre NCC NorESM1-M

five models showed a relatively close correlation with observed precipitation data. We adopted using
these five climate model ensembles for this work.

Appendix B.

Flow predictability variables used in this paper are Colwell’s indices (Colwell, 1974). Colwell’s indices
are predictability (P), constancy (C) and contingency (M). Constancy (C) and contingency (M)  are quan-
tified based on entropy measures of uncertainty from Shannon’s information theory either across all
months (C), or contingent upon a specific month (M)  (Jelínek, 1968). Predictability (P) has two  separable
components: constancy (C) and contingency (M). Predictability combines constancy and contingency
through P = C + M.  Calculation of Colwell’s indices P, C and M requires that values be binned into discrete
groups.

Predictability (P) is the converse of uncertainty, it is reasonable then to base measures of predictabil-
ity and its components, constancy (C) and contingency (M), on the mathematics of information theory
(Colwell, 1974). Following Colwell, for a frequency matrix (contingency table) with t columns (times
within a cycle) and s rows (state of the phenomenon). Let Nij be the number of cycles for which the
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phenomenon was in state i at time j. Define the column totals (Xj), row totals (Yi), and the grand total
(Z) as:

Xj =
s∑

i=1

Nij,

Yi =
t∑

j=1

Nij,

and Z =
∑

i

∑

j

Nij =
∑

j

Xj =
∑

i

Yi.

Then the uncertainty with respect to time is

H(X) = −
t∑

j=1

Xj

Z
log

Xj

Z
,

the uncertainty with respect to state is

H(Y) = −
s∑

i=1

Yi

Z
log

Yi

Z
,

and the uncertainty with respect to the interaction of time and state is

H(XY) = −
∑

i

∑

j

Nij

Z
log

Nij

Z
.

The predictability of a periodic phenomenon is maximal when there is complete certainty with
regard to state (row) once the point in time (column) is specified. In terms of information theory, the
conditional uncertainty with regard to state, with time given, is defined as (Jelínek, 1968)

HX (Y) = H(XY) − H(X).

When predictability is at its minimum, all states are equiprobable for all times. In this case H(X) = log
t, and H(XY) = log st, so that HX(Y) = log s. To obtain measure of predictability (P) with the range (0,1),
define

P = 1 − HX (Y)
log s

= 1 − H(XY) − H(X)
log s

.

Constancy is maximized when all row totals but one are zero; it is minimized when all row totals
are equal. Since H(Y) varies in precisely the opposite way, and its maximum value is log s, a measure
of constancy (C) with range (0,1) is given by

C = 1 − H(Y)
log s

.

Contingency represents the degree to which time determines state, or the degree to which
they are dependent on each other. In information theory, contingency is measured by a quan-
tity called average mutual information (Jelínek, 1968). Colwell (1974) cites contingency as
the average amount of information about the state of the phenomenon provided by time or
I(XY) = H(Y) − HX(Y) = H(Y) + H(X) − H(XY).

Colwell (1974) gives an adjusted measure of contingency (M), with range (0,1) as

M = H(X) + H(Y) − H(XY)
log s

.
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